- Painting to a back buffer instead of directly to screen
- Overriding WM_ERASEBKGND with "return true" so that it doesn't erase the background every second/every time the screen is invalidated.
Next, to get rid of the black background.
Next, to get rid of the black background.
#include <iostream> | |
#include <string> | |
using namespace std; | |
int main() | |
{ | |
int T, n,m; | |
int** influence = new int*[100]; | |
int*** dp = new int**[100]; | |
for (int i=0;i<100;i++) | |
{ | |
influence[i] = new int[100]; | |
dp[i] = new int*[100]; | |
for (int j=0;j<100;j++) | |
{ | |
dp[i][j] = new int[2]; | |
} | |
} | |
cin >> T; | |
for(int t=0;t<T;t++) | |
{ | |
cin >> n >> m; | |
string* mapp = new string[n]; | |
// read map | |
for (int n1=0;n1<n;n1++) | |
{ | |
cin >> mapp[n1]; | |
} | |
// initialisation | |
for (int n1=0;n1<n;n1++) | |
{ | |
for (int m1=0;m1<m;m1++) | |
{ | |
influence[n1][m1] = 0; | |
dp[n1][m1][0] = 0; | |
dp[n1][m1][1] = 0; | |
} | |
} | |
// create influence map | |
for (int n1=0;n1<n;n1++) | |
{ | |
for (int m1=0;m1<m;m1++) | |
{ | |
if (mapp[n1].at(m1) == '1') | |
{ | |
influence[n1][m1] += 1; | |
if (m1-1 >= 0) influence[n1][m1-1]+=1; | |
if (n1-1 >= 0) influence[n1-1][m1]+=1; | |
if (m1+1 < m) influence[n1][m1+1]+=1; | |
if (n1+1 < n) influence[n1+1][m1]+=1; | |
} | |
} | |
} | |
// run dp | |
int x,y; | |
for (y=0;y<n;y++) | |
{ | |
for (x=0;x<m;x++) | |
{ | |
int fromleft,fromtop; | |
dp[y][x][0] += influence[y][x]; | |
dp[y][x][1] += influence[y][x]; | |
if (x-1 >= 0) | |
{ | |
fromleft = min(dp[y][x-1][0], (y-1>=0)? (dp[y][x-1][1]-((mapp[y-1].at(x) == '1')?1:0)) : dp[y][x-1][1]); | |
if (mapp[y].at(x)=='1') fromleft -= 1; | |
if (mapp[y].at(x-1)=='1') fromleft -= 1; | |
} | |
if (y-1 >= 0) | |
{ | |
fromtop = min(dp[y-1][x][1], (x-1 >= 0) ? dp[y-1][x][0]-(((mapp[y].at(x-1)=='1')?1:0)) : dp[y-1][x][0]); | |
if (mapp[y].at(x)=='1') fromtop -= 1; | |
if (mapp[y-1].at(x)=='1') fromtop -= 1; | |
} | |
if (x-1 < 0 and y-1 < 0) | |
{ | |
} else if (x-1 < 0) { | |
dp[y][x][0] += fromtop; | |
dp[y][x][1] += fromtop; | |
} else if (y-1 < 0) { | |
dp[y][x][0] += fromleft; | |
dp[y][x][1] += fromleft; | |
} else { | |
dp[y][x][0] += fromleft; | |
dp[y][x][1] += fromtop; | |
} | |
} | |
} | |
cout << min(dp[y-1][x-1][0], dp[y-1][x-1][1])<<endl; | |
} | |
return 0; | |
} |
After much research, came upon this solution: http://msdn.microsoft.com/en-us/library/ms632599(VS.85).aspx#layered
Instead of
hWnd = CreateWindow(szWindowClass, 0, 0, | |
CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL); |
hWnd = CreateWindowEx(WS_EX_LAYERED, szWindowClass, 0, 0, | |
CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL); | |
SetLayeredWindowAttributes(hWnd,RGB(255,255,255), 0, LWA_COLORKEY); |
# wrong answer | |
# standard DP problem with a twist. | |
# the approach I chose: | |
# 1. create an influence map not unlike those in game AI | |
# 2. add the influence value at every point of the path | |
# 3. deduct appropriate values when a mouse is double-counted | |
# the rules for detecting double-counting mice: | |
# 1. if a mouse moves right from tile x1 to tile x2 and there | |
# is a mouse at x2, deduct 1 | |
# 2. if a mouse moves down from tile y1 to tile y2 and there | |
# is a mouse at y2, deduct 1 | |
# 3. if a mouse moves from tile t to any tile, and there is a | |
# mouse at t, deduct 1 | |
import sys | |
T = int(sys.stdin.readline().strip()) | |
for t in xrange(T): | |
n,m = sys.stdin.readline().strip().split() | |
n,m = int(n), int(m) | |
mapp = [] | |
# read map | |
for i in xrange(n): | |
mapp.append(sys.stdin.readline().strip()) | |
# create influence map | |
influence = [] | |
for i in range(n): | |
influence.append([0] * m) | |
for y in xrange(n): | |
for x in xrange(m): | |
if mapp[y][x] == "1": | |
influence[y][x] += 1 | |
if x-1 >= 0: | |
influence[y][x-1] += 1 | |
if y-1 >= 0: | |
influence[y-1][x] += 1 | |
if x+1 < m: | |
influence[y][x+1] += 1 | |
if y+1 < n: | |
influence[y+1][x] += 1 | |
# run DP | |
dp = [] | |
for i in range(n): | |
dp.append([0] * m) | |
for y in xrange(n): | |
for x in xrange(m): | |
dp[y][x] += influence[y][x] | |
# from left | |
if x-1 >= 0: | |
fromleft = dp[y][x-1] | |
# rule 1 | |
if mapp[y][x] == "1": | |
fromleft -= 1 | |
# rule 3 | |
if mapp[y][x-1] == "1": | |
fromleft -= 1 | |
# from top | |
if y-1 >= 0: | |
fromtop = dp[y-1][x] | |
# rule 2 | |
if mapp[y][x] == "1": | |
fromtop -= 1 | |
# rule 3 | |
if mapp[y-1][x] == "1": | |
fromtop -= 1 | |
if x-1 < 0 and y-1 < 0: | |
pass | |
elif x-1 < 0: | |
dp[y][x] += fromtop | |
elif y-1 < 0: | |
dp[y][x] += fromleft | |
else: | |
dp[y][x] += min(fromtop,fromleft) | |
print dp[y] | |
# time limit exceeded for some reason | |
# tested with 100x100 map and it runs fine locally | |
# updated according to the editorial | |
# catered to handle double-counting when turning a corner | |
# without passing through mouse | |
# standard DP problem with a twist. | |
# the approach I chose: | |
# 1. create an influence map not unlike those in game AI | |
# 2. add the influence value at every point of the path | |
# 3. deduct appropriate values when a mouse is double-counted | |
# the rules for detecting double-counting mice: | |
# 1. if a mouse moves right from tile x1 to tile x2 and there | |
# is a mouse at x2, deduct 1 | |
# 2. if a mouse moves down from tile y1 to tile y2 and there | |
# is a mouse at y2, deduct 1 | |
# 3. if a mouse moves from tile t to any tile, and there is a | |
# mouse at t, deduct 1 | |
import sys | |
T = int(sys.stdin.readline().strip()) | |
for t in xrange(T): | |
n,m = sys.stdin.readline().strip().split() | |
n,m = int(n), int(m) | |
mapp = [] | |
# read map | |
for i in xrange(n): | |
mapp.append(sys.stdin.readline().strip()) | |
# create influence map | |
influence = [] | |
for i in range(n): | |
influence.append([0] * m) | |
for y in xrange(n): | |
for x in xrange(m): | |
if mapp[y][x] == "1": | |
influence[y][x] += 1 | |
if x-1 >= 0: | |
influence[y][x-1] += 1 | |
if y-1 >= 0: | |
influence[y-1][x] += 1 | |
if x+1 < m: | |
influence[y][x+1] += 1 | |
if y+1 < n: | |
influence[y+1][x] += 1 | |
# run DP | |
dp = [] | |
for i in range(n): | |
b = [] | |
dp.append(b) | |
for j in range(m): | |
b.append([0,0]) # 0 for left, 1 for top | |
for y in xrange(n): | |
for x in xrange(m): | |
dp[y][x][0] += influence[y][x] | |
dp[y][x][1] += influence[y][x] | |
# from left | |
if x-1 >= 0: | |
fromleft = min(dp[y][x-1][0], dp[y][x-1][1]-int(mapp[y-1][x]) if y-1 >= 0 else dp[y][x-1][1]) | |
# rule 1 | |
if mapp[y][x] == "1": | |
fromleft -= 1 | |
# rule 3 | |
if mapp[y][x-1] == "1": | |
fromleft -= 1 | |
# from top | |
if y-1 >= 0: | |
fromtop = min(dp[y-1][x][1], dp[y-1][x][0]-int(mapp[y][x-1]) if x-1 >= 0 else dp[y-1][x][0]) | |
# rule 2 | |
if mapp[y][x] == "1": | |
fromtop -= 1 | |
# rule 3 | |
if mapp[y-1][x] == "1": | |
fromtop -= 1 | |
if x-1 < 0 and y-1 < 0: | |
pass | |
elif x-1 < 0: | |
dp[y][x][1] += fromtop | |
dp[y][x][0] += fromtop | |
elif y-1 < 0: | |
dp[y][x][0] += fromleft | |
dp[y][x][1] += fromleft | |
else: | |
dp[y][x][0] += fromleft | |
dp[y][x][1] += fromtop | |
#print dp[y] | |
print min(dp[y][x][0], dp[y][x][1]) |
# a dive into the deep, a lot of concepts here | |
# Kirchoff's Matrix Tree Theorem, Laplacian matrix, cofactors, a revision into | |
# determinants | |
# Revision: replacing a row by itself minus a multiple of another row: | |
# doesn't change determinant | |
# k=3, A = | |
# 0,0,0,1,1,1,1,1,1.......1 | |
# 0,0,0,1,1,1,1,1,1.......1 | |
# 0,0,0,1,1,1,1,1,1.......1 | |
# 1,1,1,0,0,0,1,1,1.......1 | |
# 1,1,1,0,0,0,1,1,1.......1 | |
# 1,1,1,0,0,0,1,1,1.......1 | |
# 1,1,1,1,1,1,0,0,0.......1 | |
# 1,1,1,1,1,1,0,0,0.......1 | |
# 1,1,1,1,1,1,0,0,0.......1 | |
# ............ | |
# ............ | |
# 1,1,1,1,1,1,1,1,1,1,0,0,0 | |
# D = | |
# 3n-3,0,0,0,0,0,..... | |
# 0,3n-3,0,0,0,0,0,0.. | |
# 0,0,3n-3,0,0,0,0,0.. | |
# .... | |
# .... | |
# 0,0,0,0,0........0,0,3n-3 | |
# Laplacian matrix = D - A | |
# = | |
# 3n-3,0,0,-1,-1,-1,-1,-1,-1,-1....-1 | |
# 0,3n-3,0,-1,-1,-1,-1,-1,-1,-1....-1 | |
# 0,0,3n-3,-1,-1,-1,-1,-1,-1,-1....-1 | |
# ..... | |
# -1,-1,-1,-1,-1,-1,-1...........3n-3 | |
# taking away last row, and column | |
# Laplacian matrix = D - A | |
# = | |
# 3n-3,0,0,-1,-1,-1,-1,-1,-1,-1....-1 | |
# 0,3n-3,0,-1,-1,-1,-1,-1,-1,-1....-1 | |
# 0,0,3n-3,-1,-1,-1,-1,-1,-1,-1....-1 | |
# ..... | |
# -1,-1,-1,-1,.......0,3n-3,0,-1-1 | |
# -1,-1,-1,-1,.......0,0,3n-3,-1-1 | |
# -1,-1,-1,-1,-1,-1,-1........3n-3,0 | |
# -1,-1,-1,-1,-1,-1,-1........0,3n-3 | |
# = | |
# 3n-3,3-3n,0,0,0,0,0............0 normalized = 1,-1,0000 | |
# 0,3n-3,3-3n,0,0,0,0............0 normalized = 0,1,-1,00 | |
# 1,1,3n-2,2-3n,-1,-1,0,0,0......0 -= row1 + row2*2 | |
# 0,0,0,3n-3,3-3n,0,0,0,0,0......0 # same | |
# 0,0,0,0,3n-3,3-3n,0,0,0,0......0 # same | |
# 0,0,0,1,1,3n-2,2-3n,-1,-1,0,0..0 # same | |
# .... | |
# 0,0,0..............3n-2,2-3n,-1 | |
# 0,0,0..................3n-3,3-3n | |
# -1,-1,-1,-1,-1,-1........0,3n-3 | |
# = | |
# 3n-3,3-3n,0,0,0,0,0............0 | |
# 0,3n-3,3-3n,0,0,0,0............0 | |
# 0,0,3n,2-3n,-1,-1,0,0,0........0 | |
# 0,0,0,3n-3,3-3n,0,0,0,0,0......0 | |
# 0,0,0,0,3n-3,3-3n,0,0,0,0......0 | |
# 0,0,0,0,0,3n,2-3n,-1,-1,0,0....0 | |
# .... | |
# 0,0,0.................3n,2-3n,-1 | |
# 0,0,0..................3n-3,3-3n | |
# -1,-1,-1,-1,-1,-1........0,3n-3 | |
# = | |
# 3n-3,3-3n,0,0,0,0,0............0 | |
# 0,3n-3,3-3n,0,0,0,0............0 | |
# 0,0,3n,-3n,0,0,0,0,0...........0 | |
# 0,0,0,3n-3,3-3n,0,0,0,0,0......0 | |
# 0,0,0,0,3n-3,3-3n,0,0,0,0......0 | |
# 0,0,0,0,0,3n,-3n,0,0,0,0.......0 | |
# .... | |
# 0,0,0.................3n,2-3n,-1 | |
# 0,0,0..................3n-3,3-3n | |
# -1,-1,-1,-1,-1,-1........0,3n-3 | |
# = | |
# 3n-3,3-3n,0,0,0,0,0............0 = 1,-1, 0, 0, 0 * 1 | |
# 0,3n-3,3-3n,0,0,0,0............0 = 0, 1,-1, 0, 0 * 2 | |
# 0,0,3n,-3n,0,0,0,0,0...........0 = 0, 0, 1,-1, 0 * 3 | |
# 0,0,0,3n-3,3-3n,0,0,0,0,0......0 = 0, 0, 0, 1,-1 * 4 | |
# 0,0,0,0,3n-3,3-3n,0,0,0,0......0 ...... | |
# 0,0,0,0,0,3n,-3n,0,0,0,0.......0 | |
# .... | |
# ......... .0,0,0,3n-3,3-3n, 0, 0 = ............1,-1 * (3n-4) | |
# 0,0,0..................3n,1-3n,0 | |
# 0,0,0..................3n-3,3-3n | |
# -1,-1,-1,-1,-1,-1...-1,-1,0,3n-3 | |
# = | |
# 3n-3,3-3n,0,0,0,0,0............0 | |
# 0,3n-3,3-3n,0,0,0,0............0 | |
# 0,0,3n,-3n,0,0,0,0,0...........0 | |
# 0,0,0,3n-3,3-3n,0,0,0,0,0......0 | |
# 0,0,0,0,3n-3,3-3n,0,0,0,0......0 | |
# 0,0,0,0,0,3n,-3n,0,0,0,0.......0 | |
# .... | |
# 0,0,0..................3n,1-3n,0 | |
# 0,0,0................0,3n-3,3-3n | |
# 0,0,0................3-3n,0,3n-3 | |
# = | |
# 3n-3,3-3n,0,0,0,0,0............0 | |
# 0,3n-3,3-3n,0,0,0,0............0 | |
# 0,0,3n,-3n,0,0,0,0,0...........0 | |
# 0,0,0,3n-3,3-3n,0,0,0,0,0......0 | |
# 0,0,0,0,3n-3,3-3n,0,0,0,0......0 | |
# 0,0,0,0,0,3n,-3n,0,0,0,0.......0 | |
# .... | |
# 0,0,0...................3n,1-3n,0 | |
# 0,0,0..................0,3n-3,3-3n = 0,1,-1 | |
# 0,0,0..................3-3n,0,3n-3 = -1,0,1 | |
# = | |
# 3n-3,3-3n,0,0,0,0,0............0 | |
# 0,3n-3,3-3n,0,0,0,0............0 | |
# 0,0,3n,-3n,0,0,0,0,0...........0 | |
# 0,0,0,3n-3,3-3n,0,0,0,0,0......0 | |
# 0,0,0,0,3n-3,3-3n,0,0,0,0......0 | |
# 0,0,0,0,0,3n,-3n,0,0,0,0.......0 | |
# .... | |
# 0,0,0..................1,0,0 | |
# 0,0,0..................0,3n-3,3-3n | |
# 0,0,0..................3-3n,0,3n-3 | |
# = | |
# 3n-3,3-3n,0,0,0,0,0............0 | |
# 0,3n-3,3-3n,0,0,0,0............0 | |
# 0,0,3n,-3n,0,0,0,0,0...........0 | |
# 0,0,0,3n-3,3-3n,0,0,0,0,0......0 | |
# 0,0,0,0,3n-3,3-3n,0,0,0,0......0 | |
# 0,0,0,0,0,3n,-3n,0,0,0,0.......0 | |
# .... | |
# 0,0,0..................1,0,0 | |
# 0,0,0..................0,3n-3,3-3n | |
# 0,0,0..................0,0,3n-3 | |
# cofactor(3n,3n) = (3n-3)^(2n) * (3n)^(n-2) | |
# finally correct; spent 3 hours figuring this out | |
import sys | |
def modular_exponent(a,b,n): | |
binary = "" | |
while b > 0: | |
if b & 1 == 0: | |
binary += "0" | |
else: | |
binary += "1" | |
b >>= 1 | |
result = 1 | |
for k in xrange(len(binary)): | |
result = (result * result) % n | |
if binary[len(binary)-k-1] == "1": | |
result = (result * a) % n | |
return result | |
T = sys.stdin.readline().strip() | |
n,k = T.split() | |
n = int(n) | |
k = int(k) | |
print (modular_exponent(k*(n-1),n*(k-1),10**9+7)* modular_exponent(k*n,n-2,10**9+7)) % (10**9+7) |
import sys | |
# return a list of all tokens from a case | |
# e.g. abc(abc)b(ab) returns [a,b,c,abc,b,ab] | |
def getTokens(case): | |
tokens = [] | |
token1 = case.split(")") | |
for t in token1: | |
t2 = t.split("(") | |
for c in t2[0]: | |
tokens.append(c) | |
if len(t2) > 1: | |
tokens.append(t2[1]) | |
return tokens | |
# return all dictionary entries that has | |
# that token at that position | |
# e.g. getEntries(0,"ab") returns all entries | |
# that has either a or b at pos 0 | |
# returns a set so no overlap/duplicate entry | |
def getEntries(pos,token): | |
result = set([]) | |
for c in token: | |
if (pos,c) in sets: | |
result |= sets[(pos,c)] | |
return result | |
L,D,N = sys.stdin.readline().strip().split() | |
L = int(L) | |
D = int(D) | |
N = int(N) | |
# initialize map of characters to dictionary entry | |
# dictionary[(position, letter)] = set of all dictionary entries | |
# that has that letter at that position | |
sets = {} | |
for d in xrange(D): | |
entry = sys.stdin.readline().strip() | |
l = 0 | |
for c in entry: | |
if (l,c) in sets: | |
sets[(l,c)].add(entry) | |
else: | |
sets[(l,c)] = set([entry]) | |
l += 1 | |
for n in xrange(N): | |
# 1. read case, split into tokens | |
# 2. for each position/token get all entries that has that token at position | |
# 3. then get the entries common to all tokens/is present at every position | |
case = sys.stdin.readline().strip() | |
tokens = getTokens(case) | |
possible = getEntries(0,tokens[0]) | |
for l in xrange(1,L): | |
possible &= getEntries(l, tokens[l]) | |
print "".join(["Case #",str(n+1),": ",str(len(possible))]) | |
#include "stdafx.h" | |
#include "win32_gui_test.h" | |
#define MAX_LOADSTRING 100 | |
// Global Variables: | |
HINSTANCE hInst; // current instance | |
TCHAR szTitle[MAX_LOADSTRING]; // The title bar text | |
TCHAR szWindowClass[MAX_LOADSTRING]; // the main window class name | |
// Forward declarations of functions included in this code module: | |
ATOM MyRegisterClass(HINSTANCE hInstance); | |
BOOL InitInstance(HINSTANCE, int); | |
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); | |
INT_PTR CALLBACK About(HWND, UINT, WPARAM, LPARAM); | |
int APIENTRY _tWinMain(HINSTANCE hInstance, | |
HINSTANCE hPrevInstance, | |
LPTSTR lpCmdLine, | |
int nCmdShow) | |
{ | |
UNREFERENCED_PARAMETER(hPrevInstance); | |
UNREFERENCED_PARAMETER(lpCmdLine); | |
// TODO: Place code here. | |
MSG msg; | |
HACCEL hAccelTable; | |
// Initialize global strings | |
//LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING); | |
LoadString(hInstance, 0, szTitle, MAX_LOADSTRING); | |
LoadString(hInstance, IDC_WIN32_GUI_TEST, szWindowClass, MAX_LOADSTRING); | |
MyRegisterClass(hInstance); | |
// Perform application initialization: | |
if (!InitInstance (hInstance, nCmdShow)) | |
{ | |
return FALSE; | |
} | |
hAccelTable = LoadAccelerators(hInstance, MAKEINTRESOURCE(IDC_WIN32_GUI_TEST)); | |
// Main message loop: | |
while (GetMessage(&msg, NULL, 0, 0)) | |
{ | |
if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg)) | |
{ | |
TranslateMessage(&msg); | |
DispatchMessage(&msg); | |
} | |
} | |
return (int) msg.wParam; | |
} | |
// | |
// FUNCTION: MyRegisterClass() | |
// | |
// PURPOSE: Registers the window class. | |
// | |
// COMMENTS: | |
// | |
// This function and its usage are only necessary if you want this code | |
// to be compatible with Win32 systems prior to the 'RegisterClassEx' | |
// function that was added to Windows 95. It is important to call this function | |
// so that the application will get 'well formed' small icons associated | |
// with it. | |
// | |
ATOM MyRegisterClass(HINSTANCE hInstance) | |
{ | |
WNDCLASSEX wcex; | |
wcex.cbSize = sizeof(WNDCLASSEX); | |
wcex.style = CS_HREDRAW | CS_VREDRAW ; | |
wcex.lpfnWndProc = WndProc; | |
wcex.cbClsExtra = 0; | |
wcex.cbWndExtra = 0; | |
wcex.hInstance = hInstance; | |
wcex.hIcon = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_WIN32_GUI_TEST)); | |
wcex.hCursor = LoadCursor(NULL, IDC_ARROW); | |
wcex.hbrBackground = (HBRUSH)0;//(HBRUSH)(COLOR_WINDOW+1); | |
wcex.lpszMenuName = 0;//MAKEINTRESOURCE(IDC_ARK2_GUI); | |
wcex.lpszClassName = szWindowClass; | |
wcex.hIconSm = 0;//LoadIcon(wcex.hInstance, MAKEINTRESOURCE(IDI_SMALL)); | |
return RegisterClassEx(&wcex); | |
} | |
// | |
// FUNCTION: InitInstance(HINSTANCE, int) | |
// | |
// PURPOSE: Saves instance handle and creates main window | |
// | |
// COMMENTS: | |
// | |
// In this function, we save the instance handle in a global variable and | |
// create and display the main program window. | |
// | |
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow) | |
{ | |
HWND hWnd; | |
hInst = hInstance; // Store instance handle in our global variable | |
hWnd = CreateWindow(szWindowClass, 0, 0, | |
CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL); | |
SetWindowLong(hWnd, GWL_STYLE, ~WS_CAPTION & ~WS_VSCROLL & ~WS_HSCROLL & ~WS_THICKFRAME); | |
if (!hWnd) | |
{ | |
return FALSE; | |
} | |
ShowWindow(hWnd, nCmdShow); | |
UpdateWindow(hWnd); | |
return TRUE; | |
} | |
// | |
// FUNCTION: WndProc(HWND, UINT, WPARAM, LPARAM) | |
// | |
// PURPOSE: Processes messages for the main window. | |
// | |
// WM_COMMAND - process the application menu | |
// WM_PAINT - Paint the main window | |
// WM_DESTROY - post a quit message and return | |
// | |
// | |
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) | |
{ | |
int wmId, wmEvent; | |
PAINTSTRUCT ps; | |
HDC hdc; | |
HFONT font; | |
RECT rect; | |
switch (message) | |
{ | |
case WM_COMMAND: | |
wmId = LOWORD(wParam); | |
wmEvent = HIWORD(wParam); | |
// Parse the menu selections: | |
switch (wmId) | |
{ | |
case IDM_ABOUT: | |
DialogBox(hInst, MAKEINTRESOURCE(IDD_ABOUTBOX), hWnd, About); | |
break; | |
case IDM_EXIT: | |
DestroyWindow(hWnd); | |
break; | |
default: | |
return DefWindowProc(hWnd, message, wParam, lParam); | |
} | |
break; | |
case WM_MOVE: | |
GetClientRect(hWnd, &rect); | |
InvalidateRect(hWnd,&rect, true); | |
break; | |
case WM_PAINT: | |
hdc = BeginPaint(hWnd, &ps); | |
SetBkMode(hdc, TRANSPARENT); | |
GetClientRect(hWnd, &rect); | |
//DrawText(hdc, TEXT("Hello, win32!"),-1,&rect,DT_SINGLELINE | DT_CENTER | DT_VCENTER); | |
SetTextColor(hdc, RGB(255,0,0)); | |
font = CreateFont(46*2, 28*2, 215, 0, | |
FW_NORMAL, FALSE, FALSE, FALSE, | |
ANSI_CHARSET, OUT_DEFAULT_PRECIS, | |
CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY, | |
DEFAULT_PITCH | FF_ROMAN, | |
L"Times New Roman"); | |
SelectObject(hdc, font); | |
TextOut(hdc, 50, 400, L"HELLO WIN32", 12); | |
EndPaint(hWnd, &ps); | |
break; | |
case WM_DESTROY: | |
PostQuitMessage(0); | |
break; | |
default: | |
return DefWindowProc(hWnd, message, wParam, lParam); | |
} | |
return 0; | |
} | |
// Message handler for about box. | |
INT_PTR CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam) | |
{ | |
UNREFERENCED_PARAMETER(lParam); | |
switch (message) | |
{ | |
case WM_INITDIALOG: | |
return (INT_PTR)TRUE; | |
case WM_COMMAND: | |
if (LOWORD(wParam) == IDOK || LOWORD(wParam) == IDCANCEL) | |
{ | |
EndDialog(hDlg, LOWORD(wParam)); | |
return (INT_PTR)TRUE; | |
} | |
break; | |
} | |
return (INT_PTR)FALSE; | |
} |
# My first attempt at implementing Miller-Rabin primality test | |
# decided to implement it instead of stealing from somewhere | |
# in order to understand it | |
# v2. fixed the miller rabin pass function. Now correct. | |
# v3. a**s is too slow for large numbers | |
# v4. using def apowbmodn(a,b,n): | |
# if b==1: return a | |
# return apowbmodn(a*a,b/2,n) if b%2==0 else apowbmodn(a,b-1,n)*a | |
# is too slow! My guess is that the stack isn't that huge to accomodate such | |
# computation. | |
# v5. redesigned my modular exponential function. | |
# I studied the solution from | |
# http://www.codechef.com/viewsolution/2167990 | |
# got an Non Zero Exit Code error =\ | |
# v6. getting an OverflowError in the statement for i in xrange(N-1) | |
# fixed; no longer using xrange | |
import random | |
import sys | |
def miller_rabin_pass(a,r,n): | |
a = a % n | |
if a == 1: return True | |
for z in xrange(r-1): | |
if a == n-1: return True | |
a = (a*a) % n | |
return a == n-1 | |
def apowbmodn(a,b,n): | |
binary = "" | |
while b > 0: | |
if b & 1 == 0: | |
binary += "0" | |
else: | |
binary += "1" | |
b >>= 1 | |
result = 1 | |
for i in xrange(len(binary)): | |
result = (result * result)%n | |
if binary[len(binary)-i-1] == "1": | |
result = (result * a)%n | |
return result | |
def isProbablyPrime(n): | |
if n == 2: return True | |
if n % 2 == 0: return False | |
random.seed() | |
if n < 100: | |
for i in xrange(2,n): # lazy to put sqrt | |
if n%i ==0: return False | |
return True | |
else: | |
s = n-1 | |
r = 0 | |
while s % 2 == 0: | |
r += 1 | |
s /= 2 | |
for z in xrange(30): | |
a = int(random.random() *(n-1))+1 | |
if not miller_rabin_pass(apowbmodn(a,s,n),r,n): | |
return False | |
return True | |
T = int(sys.stdin.readline().strip()) | |
for z in xrange(T): | |
N = int(sys.stdin.readline().strip()) | |
while 1: | |
if isProbablyPrime(N): | |
print N | |
break | |
N -= 1 |
# just some test inut | |
# 10 -1 -1 -1 -1 1 -9 8 -99 2000 0 -1 -1 | |
# and just playing around with DP | |
# 6 -4 -3 -2 -1 | |
# 7 -3 -2 -1 0 1 | |
# -2 -12 -11 -10 -9 -8 -9 | |
# 6 -4 -3 -2 -1 0 -1 8 | |
# -84 -94 -103 -102 -101 -100 -99 -100 -91 | |
# Managed to hit upon this property after thinking for hours | |
# Edit: This is mentioned in the editorial too | |
# Property 1: | |
# j and k cannot have gap | |
# because if have gap > 0, one side will eat it up | |
# hence for each middle position j or k | |
# calculate the min/max values for each section, one to the left | |
# and one to the right of j/k | |
# then calculate the largest absolute difference between each | |
# pair of left/right sections | |
# Property 2: | |
# if I need the minimum value, and the sum of all elements | |
# before this is > 0, then why shouldn't I leave them all out? | |
# I should do this checking at every point where the previous | |
# value is positive and my current number is negative. | |
# EDIT: from the editorial I learnt that I should check at every | |
# point, not just the points I've chosen. | |
# need to speed it up | |
import sys | |
T = int(sys.stdin.readline().strip()) | |
for z in range(T): | |
N = int(sys.stdin.readline().strip()) | |
numbers = [] | |
leftMins = [] | |
leftMaxs = [] | |
rightMins = [] | |
rightMaxs = [] | |
max_delish = 0 | |
lines = sys.stdin.readline().strip() | |
for n in lines.split(" "): | |
numbers.append(int(n)) | |
leftMins.append(10000001) | |
leftMaxs.append(-10000001) | |
rightMins.append(10000001) | |
rightMaxs.append(-10000001) | |
i_min = 0 | |
i_max = 0 | |
leftMins[0] = numbers[0] | |
leftMaxs[0] = numbers[0] | |
rightMins[len(numbers)-1] = numbers[len(numbers)-1] | |
rightMaxs[len(numbers)-1] = numbers[len(numbers)-1] | |
# for left sides | |
for j in range(1,N-1): | |
# for minimums | |
if numbers[j] <= 0 and numbers[j-1] > 0: | |
# try to move i | |
if leftMins[j-1] >= 0: | |
i_min = j | |
leftMins[j] = numbers[j] | |
else: | |
leftMins[j] = leftMins[j-1] + numbers[j] | |
else: | |
leftMins[j] = leftMins[j-1] + numbers[j] | |
# for maximums | |
if numbers[j] >= 0 and numbers[j-1] < 0: | |
# try to move i | |
if leftMaxs[j-1] <= 0: | |
i = j | |
leftMaxs[j] = numbers[j] | |
else: | |
leftMaxs[j] = leftMaxs[j-1] + numbers[j] | |
else: | |
leftMaxs[j] = leftMaxs[j-1] + numbers[j] | |
l_min = len(numbers)-1 | |
l_max = len(numbers)-1 | |
# for right sides | |
for z in range(1,N-1): | |
j = N - 1 - z | |
# for minimums | |
if numbers[j] <= 0 and numbers[j+1] > 0: | |
# try to move i | |
if rightMins[j+1] >= 0: | |
l_min = j | |
rightMins[j] = numbers[j] | |
else: | |
rightMins[j] = rightMins[j+1] + numbers[j] | |
else: | |
rightMins[j] = rightMins[j+1] + numbers[j] | |
# for maximums | |
if numbers[j] >= 0 and numbers[j+1] < 0: | |
# try to move i | |
if rightMaxs[j+1] <= 0: | |
l_max = j | |
rightMaxs[j] = numbers[j] | |
else: | |
rightMaxs[j] = rightMaxs[j+1] + numbers[j] | |
else: | |
rightMaxs[j] = rightMaxs[j+1] + numbers[j] | |
max_delish = 0 | |
for j in range(N-1): | |
k = j+1 | |
delish = max(rightMaxs[k] - leftMins[j], leftMaxs[j] - rightMins[k]) | |
if delish > max_delish: | |
max_delish = delish | |
print max_delish |
# Correction after viewing the editorial | |
# Property 1: | |
#j and k cannot have gap | |
#because if have gap > 0, one side will eat it up | |
# hence for each middle position j or k | |
# calculate the min/max values for each section, one to the left | |
# and one to the right of j/k | |
# then calculate the largest absolute difference between each | |
# pair of left/right sections | |
import sys | |
T = int(sys.stdin.readline().strip()) | |
for z in range(T): | |
N = int(sys.stdin.readline().strip()) | |
numbers = [] | |
leftMins = [] | |
leftMaxs = [] | |
rightMins = [] | |
rightMaxs = [] | |
max_delish = 0 | |
lines = sys.stdin.readline().strip() | |
for n in lines.split(" "): | |
numbers.append(int(n)) | |
leftMins.append(10000001) | |
leftMaxs.append(-10000001) | |
rightMins.append(10000001) | |
rightMaxs.append(-10000001) | |
leftMins[0] = numbers[0] | |
leftMaxs[0] = numbers[0] | |
rightMins[len(numbers)-1] = numbers[len(numbers)-1] | |
rightMaxs[len(numbers)-1] = numbers[len(numbers)-1] | |
# for left sides | |
for j in range(1,N-1): | |
# for minimums | |
if leftMins[j-1] >= 0: | |
leftMins[j] = numbers[j] | |
else: | |
leftMins[j] = leftMins[j-1] + numbers[j] | |
# for maximums | |
if leftMaxs[j-1] <= 0: | |
leftMaxs[j] = numbers[j] | |
else: | |
leftMaxs[j] = leftMaxs[j-1] + numbers[j] | |
# for right sides | |
for z in range(1,N-1): | |
j = N - 1 - z | |
# for minimums | |
if rightMins[j+1] >= 0: | |
rightMins[j] = numbers[j] | |
else: | |
rightMins[j] = rightMins[j+1] + numbers[j] | |
# for maximums | |
if rightMaxs[j+1] <= 0: | |
rightMaxs[j] = numbers[j] | |
else: | |
rightMaxs[j] = rightMaxs[j+1] + numbers[j] | |
max_delish = 0 | |
for j in range(N-1): | |
k = j+1 | |
delish = max(rightMaxs[k] - leftMins[j], leftMaxs[j] - rightMins[k]) | |
if delish > max_delish: | |
max_delish = delish | |
print max_delish |
# 1. partition into substrings separated by # | |
# 2. for every substring, create map of symbols and their frequencies | |
# 3. for every set of 3 points, from the first 3 to the last 3, compute longest length | |
# 4. length for each set of points = longest length for the 4 partitions: | |
# a. all partitions, merged as one, before P1 | |
# b. partition between P1 and P2 | |
# c. partition between P2 and P3 | |
# d. all partitions, merged as one, after P3 | |
# can optimize step 4 by maintaining a map for 4a and 4b each. | |
import sys | |
def getMaxFrequency(freq): | |
maxFreq = 0 | |
key = -1 | |
for k in freq.keys(): | |
if freq[k] > maxFreq: | |
maxFreq = freq[k] | |
key = k | |
return maxFreq | |
def compileFrequencies(flist): | |
a = {} | |
for f in flist: | |
for k in f.keys(): | |
if k in a: | |
a[k] += f[k] | |
else: | |
a[k] = f[k] | |
return a | |
def minusFrequencies(one, two): | |
a = one | |
for k in two.keys(): | |
a[k] -= two[k] | |
return a | |
T = int(sys.stdin.readline().strip()) | |
for z in range(T): | |
S = sys.stdin.readline().strip() | |
# create partitions and frequency dictionary | |
partitions = [] | |
prevIndex = S.find("#") | |
frequencies = {} | |
for c in S[:prevIndex]: | |
if c in frequencies: | |
frequencies[c] += 1 | |
else: | |
frequencies[c] = 1 | |
partitions.append(frequencies) | |
while prevIndex != -1: | |
nextIndex = S.find("#", prevIndex+1) | |
frequencies = {} | |
if nextIndex == -1: | |
for c in S[prevIndex+1:]: | |
if c in frequencies: | |
frequencies[c] += 1 | |
else: | |
frequencies[c] = 1 | |
else: | |
for c in S[prevIndex+1:nextIndex]: | |
if c in frequencies: | |
frequencies[c] += 1 | |
else: | |
frequencies[c] = 1 | |
#print getMaxFrequency(frequencies) | |
partitions.append(frequencies) | |
prevIndex = nextIndex | |
# cannot have empty partitions | |
error = False | |
for p in partitions: | |
if len(p) == 0: | |
error = True | |
if len(partitions) < 4: | |
error = True | |
#print partitions | |
if error != True: | |
max_length = 0 | |
allLeft = partitions[0] | |
allRight = compileFrequencies(partitions[3:]) | |
#print allRight | |
i = 0 | |
max_length = 3 + getMaxFrequency(allLeft) + getMaxFrequency(partitions[i+1]) + getMaxFrequency(partitions[i+2]) + getMaxFrequency(allRight) | |
for i in range(1,len(partitions)-3): | |
# alter allLeft and allRight | |
allLeft = compileFrequencies([allLeft, partitions[i]]) | |
allRight = minusFrequencies(allRight, partitions[i+3]) | |
length = 3 + getMaxFrequency(allLeft) + getMaxFrequency(partitions[i+1]) + getMaxFrequency(partitions[i+2]) + getMaxFrequency(allRight) | |
if length > max_length: | |
max_length = length | |
#length = 3 + 1 | |
print max_length | |
else: | |
print 0 | |
# Let p = probability that team A win | |
# M = amount of rupees bet on team A | |
# R = number of rupees = 10000 | |
# E = max expected rupees | |
# Hence, | |
# R-M = number of rupees bet on team B | |
# 1-p = probability that team B wins | |
# Expected rupees | |
# = p(M + M * (2-2p)) + (1-p)((R-M) + (R-M) * (2-2(1-p))) | |
# = pM + pM(2-2p) + (1-p)(R-M) + (1-p)(R-M)(2p) | |
# = pM + 2pM -2ppM + R-Rp -M +pM + (2p-2pp)(R-M) | |
# = 4pM - 2ppM +R-Rp-M + 2pR - 2ppR -2pM +2ppM | |
# = 2pM + R -Rp - M + 2pR - 2ppR | |
# = 2pM + R - M + pR - 2ppR | |
# = M(2p-1) + R - pR - 2ppR | |
# For each case, p and R are constant. | |
# Take the derivative of E against M | |
# to find value of M which E is greatest | |
# That value = 2p-1. | |
# If p > 0.5, increasing M will increase E | |
# If p < 0.5, increasing M will decrease E | |
# Hence if p > 0.5 bet everything on team A | |
# else if p < 0.5 bet everything on team B | |
# Verification: expected rupees | |
# = p[M( 1 + (2-2p))] + (1-p)[(R-M)(1+2p)] | |
# = pM(3 - 2p) + (R-M) (1+p-2pp) | |
# = 3pM - 2ppM + R + Rp - 2ppR - M - pM + 2ppM | |
# = 2pM + R + Rp - 2ppR - M | |
# = pM - M + pM + R + Rp - 2ppR | |
# = M(p-1) + pM + R(1+p-2pp) | |
import sys | |
T = int(sys.stdin.readline().strip()) | |
R = 10000 | |
for i in range(T): | |
p = float(sys.stdin.readline().strip()) | |
if p > 0.5: | |
print(p*(R+R*(2-2*p))) | |
else: | |
print((1-p)*(R+R*2*p)) |
# 1. split string into two sections along the middle | |
# 2. use a associative array to store frequency of letters in each part | |
# 3. compare the 2 associative arrays | |
# 4. win! | |
import sys | |
T = int(sys.stdin.readline().strip()) | |
for i in range(T): | |
p = sys.stdin.readline().strip() | |
if (len(p) % 2 == 0): | |
# even | |
part1 = p[0:(len(p)/2)] | |
part2 = p[len(p)/2:] | |
else: | |
# odd | |
part1 = p[0:int(len(p)/2)] | |
part2 = p[int(len(p)/2)+1:] | |
a = {} | |
b = {} | |
for c in part1: | |
if (c in a): | |
a[c]+=1 | |
else: | |
a[c] = 1 | |
for c in part2: | |
if (c in b): | |
b[c]+=1 | |
else: | |
b[c]=1 | |
palid = True | |
for key in a.keys(): | |
#print(key, ":", a[key]) | |
if key not in b or a[key] != b[key]: | |
palid = False | |
for key in b.keys(): | |
#print(key, ":", a[key]) | |
if key not in a or a[key] != b[key]: | |
palid = False | |
if palid: | |
print ("YES") | |
else: | |
print("NO") | |
The above problem statement, requires the output to be the minimum possible number. The first step is to understand that the number would be smaller if you take the smallest possible 'Base System' for the number. To find the base system that you want, you would have to find the number of unique symbols in the input string. If there are 2 'Unique' symbols in the string, take it as 'Base 2' system. If there are 10 unique symbols, take it as 'Base 10 (Decimal)' system.....and so on. Since the 'Unary System' is not used, ignore that.
After that, we need to find how we can make the sum, as minimal as possible. Since we don't know which digit stands for what, we have to make a decision for each symbol, so as to make the number, as small as possible. Since the left most digit carries more weight, this digit should be multiplied by the smallest digit. But since the left-most digit can't be zero (0), make it '1'. Use the Zero (0) for the second left-most digit (if there is 2nd digit in the number). Then use '2' for the third left most digit (if it is unique), '3' for the 4th left most digit (if it is unique)..and so on, unitl the end of the string with symbols.
// Google code jam Round 1C 2009 | |
// Problem A: All Your Base | |
// sirpoot | |
#include <iostream> | |
#include <string> | |
#include <map> | |
#include "math.h" | |
#include "bigint.h" | |
using namespace std; | |
BigInt power(int one, int two) | |
{ | |
if (two == 0) return 1; | |
BigInt a = one; | |
for (int i=1;i<two;i++) | |
{ | |
a *= one; | |
} | |
return a; | |
} | |
int main() | |
{ | |
int T; | |
cin >> T; | |
for (int n=0;n<T;n++) | |
{ | |
string input; | |
map <char, int> val; | |
cin >> input; | |
//cout << input << endl; | |
// 1. count number of unique symbols | |
int symbols = 0; | |
for (int i=0;i<input.size();i++) | |
{ | |
if (val.count(input.at(i)) <= 0) | |
{ | |
symbols++; | |
val[input.at(i)] = -1; | |
} | |
} | |
// 2. assign values to symbols. First encountered symbol has value of 1, second encountered is 0 | |
// third encountered symbol is 3, 4th is 4, 5th is 5.... | |
int nextVal = 0; | |
for (int i=0;i<input.size();i++) | |
{ | |
if (val[input.at(i)] == -1) | |
{ | |
val[input.at(i)] = nextVal == 0 ? 1 : (nextVal == 1 ? 0 : nextVal); | |
//cout << input.at(i) << " = " << (nextVal == 0 ? 1 : (nextVal == 1 ? 0 : nextVal)) << endl; | |
nextVal++; | |
} | |
} | |
// 3. calculate minimum seconds remaining | |
BigInt sum = 0; | |
int base = symbols; | |
base = base < 2 ? 2 : base; // not using unary | |
for (int i=0;i<input.size();i++) | |
{ | |
//cout << power(base, input.size()-1-i) * val[input.at(i)]<< " + "; | |
sum += power(base, input.size()-1-i) * val[input.at(i)]; | |
} | |
cout << "Case #" << n+1 << ": " << sum << endl; | |
} | |
return 0; | |
} |
// acm uva 103 stacking boxes | |
// sirpoot | |
#include <iostream> | |
#include <algorithm> | |
using namespace std; | |
#define MAX 30 | |
int dimension; | |
int num_box; | |
int** box; | |
int max_length[MAX]; | |
int from[MAX]; | |
int label[MAX]; | |
using namespace std; | |
bool can_nest(int* inner, int* outer) | |
{ | |
for (int i=0;i<dimension;i++) | |
{ | |
if (inner[i] >= outer[i]) | |
return false; | |
} | |
return true; | |
} | |
void recursePrint(int box) | |
{ | |
if (from[box] != -1) | |
recursePrint(from[box]); | |
cout << label[box] << " "; | |
} | |
int main() | |
{ | |
while (cin >> num_box >> dimension) | |
{ | |
// input | |
box = new int*[num_box]; | |
for (int i=0;i<num_box;i++) | |
{ | |
box[i] = new int[dimension]; | |
for (int k=0;k<dimension;k++) | |
{ | |
cin>>box[i][k]; | |
} | |
sort(box[i], box[i]+dimension); | |
} | |
// done input, init | |
for (int i=0;i<MAX;i++) | |
for (int j=0;j<MAX;j++) | |
{ | |
max_length[i] = 1; | |
from[i] = -1; | |
label[i] = i+1; | |
} | |
// done init, process | |
// first, sort boxes from smallest to biggest | |
for (int i=0;i<num_box;i++) | |
{ | |
for (int j=i-1;j>=0;j--) | |
{ | |
if (can_nest(box[j+1],box[j])) | |
{ | |
int* temp; | |
// swap box | |
temp = box[j]; | |
box[j] = box[j+1]; | |
box[j+1] = temp; | |
// swap label | |
int temp2; | |
temp2 = label[j]; | |
label[j] = label[j+1]; | |
label[j+1] = temp2; | |
} | |
} | |
} | |
// do the DP | |
for (int i=0;i<num_box;i++) | |
{ | |
// with i as end point | |
for (int j=i-1;j>=0;j--) | |
{ | |
if (i==j) continue; | |
if (can_nest(box[j],box[i])) | |
{ | |
if (max_length[j] + 1 >= max_length[i]) | |
{ | |
max_length[i] = max_length[j] + 1; | |
from[i] = j; | |
} | |
} | |
} | |
} | |
// processing done, analyze results | |
int max_max_length = 0; | |
int max_box = -1; | |
for (int i=0;i<num_box;i++) | |
{ | |
if (max_length[i] > max_max_length) | |
{ | |
max_max_length = max_length[i]; | |
max_box = i; | |
} | |
} | |
// analysis done, output | |
cout << max_max_length << "\n"; | |
recursePrint(max_box); | |
cout <<"\n"; | |
} | |
return 0; | |
} |